Motion Review

What to know!

Vectors

- Define scalar and vector and provide/identify examples of each.
- Determine the resultant vector (magnitude, direction, and angle) through:
- Graphing method (ruler/protractor)
- Pythagorean $\left(\operatorname{side}^{2}+\right.$ side $^{2}=$ hyp $\left.^{2}\right)$

Vectors

- Understand that vectors can be added in any order as long as they are added tip to tail!
- Resultant vectors go tail-tail from start point and tip-tip at ending point
- Measure the angle/direction where the two tails meet

Motion

- Speed $=$ distance/time
- Velocity $=$ displacement/time
- Calculate speed when given D and T
- Calculate distance when given S and T
- Calculate time when given D and S

Motion

- Calculate average speed
- Total distance/total time
- Calculate average velocity
- Total displacement/total time

Acceleration

- Calculate average acceleration
- $\mathrm{a}=\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right) / \mathrm{t}$
- Calculate t when given $\mathrm{a}, \mathrm{V}_{\mathrm{f}}$ and V_{i}
- Calculate Vf when given a, t, and V_{i}

Motion Graphs

- Calculate the slope of a distance vs time graph
- Calculate the slope of a velocity vs time graph
- Write a good description of motion based on graph
- Create a graph based on a word description of motion

